• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação]

[Potenciação]

Mensagempor SCHOOLGIRL+T » Sex Nov 09, 2012 23:06

Resolver a equação:
{2}^{x-1}+{2}^{x+3}+{2}^{x-2}+{2}^{x}=2496
Me ajudem! Não precisa resolver passo a passo. Só me dê dicas para que eu consiga resolver, tipo, alguma propriedade. Necessito. Obg.
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Sex Nov 09, 2012 23:21

SCHOOLGIRL+T escreveu:Resolver a equação:
{2}^{x-1}+{2}^{x+3}+{2}^{x-2}+{2}^{x}=2496
Me ajudem! Não precisa resolver passo a passo. Só me dê dicas para que eu consiga resolver, tipo, alguma propriedade. Necessito. Obg.


\\ 2^{x - 1} + 2^{x + 3} + 2^{x - 2} + 2^x = 2496 \\\\ 2^x \cdot 2^{- 1} + 2^x \cdot 2^3 + 2^x \cdot 2^{- 2} + 2^x = 2496 \\\\ \frac{2^x}{2} + 2^x \cdot 8 + \frac{2^x}{4} + 2^x = 2496 \\\\ 2^x\left ( \frac{1}{2} + 8 + \frac{1}{4} + 1 \right ) = 2496 \\\\\\ 2^x \cdot \frac{39}{4} = 2^6 \cdot 39 \\\\ 2^x = 4 \cdot 2^6 \\\\ 2^x = 2^{2 + 6} \\\\ 2^x = 2^8 \\\\ \boxed{x = 8}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação]

Mensagempor SCHOOLGIRL+T » Sex Nov 09, 2012 23:29

danjr5 escreveu:
SCHOOLGIRL+T escreveu:Resolver a equação:
{2}^{x-1}+{2}^{x+3}+{2}^{x-2}+{2}^{x}=2496
Me ajudem! Não precisa resolver passo a passo. Só me dê dicas para que eu consiga resolver, tipo, alguma propriedade. Necessito. Obg.


\\ 2^{x - 1} + 2^{x + 3} + 2^{x - 2} + 2^x = 2496 \\\\ 2^x \cdot 2^{- 1} + 2^x \cdot 2^3 + 2^x \cdot 2^{- 2} + 2^x = 2496 \\\\ \frac{2^x}{2} + 2^x \cdot 8 + \frac{2^x}{4} + 2^x = 2496 \\\\ 2^x\left ( \frac{1}{2} + 8 + \frac{1}{4} + 1 \right ) = 2496 \\\\\\ 2^x \cdot \frac{39}{4} = 2^6 \cdot 39 \\\\ 2^x = 4 \cdot 2^6 \\\\ 2^x = 2^{2 + 6} \\\\ 2^x = 2^8 \\\\ \boxed{x = 8}


Poxa, você é mto fera!! Obrigada meeeeesmo, hein!! =DDD
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Sex Nov 09, 2012 23:34

:$ rsrsrs

O mais importante: conseguiu entender?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação]

Mensagempor SCHOOLGIRL+T » Sex Nov 09, 2012 23:41

danjr5 escreveu::$ rsrsrs

O mais importante: conseguiu entender?


PERFEITAMENTE!! :y:
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)