• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algoritmo de Euclides estendido

Algoritmo de Euclides estendido

Mensagempor Nane » Qua Out 13, 2010 22:50

Dados a e b inteiros, seja d=mdc(a,b) então existem r e s inteiros tais que ra+sb=d.Usando o algoritmo de Euclides estendido mostre que se p é primo e a e b são inteiros tais que p é divisor de ab, então p é divisor de a ou p é divisor de b.

Preciso de ajuda.

p é primo, então p é divisível por p e 1
a e b inteiros
p/ab, então p/a ou p/b
Nane
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 09, 2010 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Rosangela Ramos » Seg Out 18, 2010 18:26

Seja p um primo e a e b inteiros tais que p é divisor de ab.

Queremos provar que p é divisor de a ou p é divisor de b. Ou seja, queremos provar que se p não é divisor de a então p tem que ser divisor b.

Suponha que p não é divisor de a. Como p é primo, p só tem dois divisores (1 e p) e como p não divide a, temos então que mdc(a,p)=1. Pelo algoritmo estendido de Euclides temos então que existem r e s inteiros tais que

s.a+r.p=1

Multiplicando ambos os membros por b, temos

s.a.b + r.p.b = b

Mas p divide a.b e p claramente divide p.b logo p divide s.a.b + r.p.b, ou seja,
p divide b.
Rosangela Ramos
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Out 18, 2010 18:16
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Nane » Seg Out 18, 2010 19:04

Obrigada pela ajuda, tenho ainda dificuldades em trabalhar com essas novas ferramentas, fórum, etc.
Nane
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 09, 2010 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Rosangela Ramos » Seg Out 18, 2010 19:06

vou te enviar uma definição mais detalhada...tudo bem?
Rosangela Ramos
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Out 18, 2010 18:16
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Nane » Ter Out 19, 2010 18:38

Consegui entender e reescrever essa proposição.
Valeu,
atenciosamente,
Nane
Nane
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 09, 2010 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.