• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Subconjuntos

Subconjuntos

Mensagempor karina_97 » Dom Out 10, 2010 19:20

a)Quantos subconjuntos tem o conjunto {a,b,c,d}?
Há 12 moças e 10 rapazes, onde 5 deles (3 moças e 2 rapazes) são irmão e os restantes não possuem parentesco. Quantos são os casamentos possíveis?

* Para a letra a, sei que devemos separar os subconjuntos de um elemento, dois elementos, três elementos, e quatro elementos.Então, fiz o seguinte:

-> Há 4 subconjuntos de um elemento;
-> Há 4\times3=12 subconjuntos de dois elementos;
-> Há 4\times3\times2=24 subconjuntos de dois elementos;
-> Há 4\times3\times2\times1=24 subconjuntos de dois elementos.

Assim, há 4+12+24+24=64 subconjuntos do conjunto {a,b.c.d}.
Mas a resposta correta que está no livro é 16; qual foi o meu erro? :?:

Para a letra b eu gostaria de saber que tipo de calculo é utilizado.
karina_97
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 10, 2010 18:58
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Subconjuntos

Mensagempor Elcioschin » Dom Out 10, 2010 20:03

a) Existem:

1 subconjunto dom nenhum elemento (subconjunto vazio) ---> { } ----> Fórmula ----> C(4, 0) = 1

4 subconjuntos de 1 elemento ----> {a} ; {b} ; {c} ; {d} -----> Fórmula = C(4, 1) = 4

6 subconjuntos de 2 elementos ----> {a, b} ; {a, c} ; {a, d} ; {b, c} ; {b, d} ; (c, d) ----> Fórmula = C(4, 2) = 6

4 subconjuntos de 3 elementos ----> {a, b, c} ; (a, b, d} ; (a, c, d} ; (b, c, d) ----> Fórmula = C(4, 3) = 4

1 subconjunto de 4 elementos ----> {a, b , c, d} ----> Fórmula = C(4, 4) = 1

Total = 16 subconjuntos

Um meio de calcular direto é ----> N = 2^4 ----> N = 16


B) Total de casais possíveis ----> 12*10 = 120

São proibidos casamentos entre irmãos ----> 3*2 = 6

Total de casamentos permitidos = 120 - 6 = 114
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}