• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor marcella_mat08 » Qua Jul 09, 2008 17:14

Olha, tow tentando resolver umas questões para a prova de amanhã da universidade!
Mas o negócio está difícil e eu sei que é muito simples! "/
O problema é:
Provar que:
a) (A - B) U (B - A) = (A U B) - (A ^ B)
b) A contém B => Bcomplementar contém Acomplementar
c) (A - B) contém Bcomplementar
d) (A ^ B) contém B
e) (A ^ B ^ C) contém (A ^ B)
f) (A - B) contém (A U B)
marcella_mat08
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 28, 2008 16:21
Área/Curso: Estudante
Andamento: cursando

Re: Conjuntos

Mensagempor admin » Qua Jul 09, 2008 18:50

Olá marcella_mat08, boa tarde, seja bem-vinda!

Para eliminar eventuais confusões com o símbolo de inclusão \subset, favor conferir o enunciado.
O que você "escreveu" fica desta forma:

a) (A-B) \cup (B-A) = (A \cup b) - (A \wedge B)

b) (A \supset B) \Rightarrow (\bar{B} \supset \bar{A})

c) (A - B) \supset \bar{B}

d) (A \wedge B) \supset B

e) (A \wedge B \wedge C) \supset (A \wedge B)

f) (A - B) \supset (A \cup B)


Sobre a notação:

A \subset B
A é subconjunto de B
ou
A está contido em B
ou
A é parte de B


B \supset A
B contém A


Quando queremos provar que dois conjuntos são iguais, por exemplo, A = B, precisamos mostrar que todo elemento de A pertence a B e, reciprocamente, todo elemento de B pertence a A. A notação fica assim:

A=B \Leftrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)

Esta definição diz que todo elemento de A é elemento de B e vice-versa, isto é, A \subset B e B \subset A, portanto, também podemos considerar a condição de igualdade assim:

A=B \Leftrightarrow (A \subset B \;\;\;e\;\;\; B \subset A)

Assim, para provarmos que A = B devemos provar que A \subset B e B \subset A.


Veja também em seu material as definições da diferença e de complementar entre conjuntos!

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}