Seja p(x)=x^2+px+p uma função real na variável real.Os valores de p para os quais f(x)=0 possue raiz dupla positiva são:
a) 0<p<4
b) p=4
c) p=0
d) f(x)=0 não pode ter raiz dupla positiva
e) n.r.a



um polinômio tal que
. Seja
a raiz dupla de
, então a primeira derivada de
no ponto
é nula, isto é:
, assim
é a raiz dupla.
é raiz, então:
, isto é,
e como
e decore em
.
um polinômio ta que
. Seja
a raiz dupla de
, pelas relações de Girard, temos:
e
e dessas obtemos:
e como 
adimite raiz dupla e é um polinômio do segundo grau, então
pode ser reduzido a um quadrado perfeito de forma canônica:
, tal que
é sua raiz. Assim,
. Fazendo a identidade polinomial entre o polinômio supracitado e o fornecido pelo enunciado, obtemos:
e
e dessas relalçõs surge:
e como 

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)