• Anúncio Global
    Respostas
    Exibições
    Última mensagem

RAZÃO questão suco de laranja

RAZÃO questão suco de laranja

Mensagempor hevhoram » Qui Jun 03, 2010 20:29

Uma jarra contém uma mistura de suco de laranja com água, na proporção de 1 para 3, e outra jarra contém uma mistura de suco de laranja com água na proporção de 1 para 5. Misturando partes iguais dos conteúdos das jarras, obteremos uma mistura de suco de laranja com água na proporção de :
Resposta: 5 para 19
1/3 + 1/5 = 8/15 não entendi o que é pra fazer alguém pode me dar uma luz?
Avatar do usuário
hevhoram
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qua Jun 02, 2010 11:43
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: informática educacional
Andamento: formado

Re: RAZÃO questão suco de laranja

Mensagempor Neperiano » Dom Jun 06, 2010 14:33

Ola

Tenho que ressaltar que esta questão apesar de parecer fácil é bem complicadinha

Bom primeiro voce tenque se dar conta que não basta somar uma com a outra, pois voce precisa pegar partes iguais

Então primeiro voce precisa determinar quanto de laranja e água tem numa mistura, pegue 1 litro de cada mistura

Na mistura A

Em 1 litro de mistura vai ter:
0,75 ml de Água
0,25 ml de Laranja

Na mistura B

Em 1 litro:
0,83 de Água
0,16 de Laranja

Agora voce deve somar

Laranja da A + B e Água da A + B

Que vai dar

0,41/1,58=0,25

5/19 =0,26

É praticamente a mesma coisa mudou pelo arredondamento das casas

Note que voce poderia resolver por fração tambem, para tanto na hora de igualar as quantidades em 1 litro, voce deveria utilizar fração, exemplo:

Mistura A,
3/4 de Água, 1/4 de Laranja

Fazer o mesmo com a mistura B e somar

Espero ter ajudado

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: RAZÃO questão suco de laranja

Mensagempor MarceloFantini » Seg Jun 07, 2010 19:04

Não é tão dificil Maligno, veja: o suco A tem 4 partes, sendo que a água é 3k e o suco 1k, tendo então 4k. O suco B, analogamente, tem 5k e k, totalizando 6k. Queremos um suco C tal que a razão entre suco A e suco B seja um, ou seja, mesma proporção (ou proporção iguais). Para que tenham proporções iguais, o suco A tem que ser usado três vezes e o suco B duas vezes. Logo, a proporção dos componentes será a soma: 3(3k) + 2(5k) = 9k + 10k = 19k de água e 3(k) + 2(k) = 3k + 2k = 5k de suco.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: RAZÃO questão suco de laranja

Mensagempor Neperiano » Ter Jun 08, 2010 15:12

Ola

É tambem da para resolver assim não quis dizer no sentido de dificil mas no sentido de pega ratão, muita gente cai nessa, soma direto.
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?