• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra

algebra

Mensagempor adauto martins » Dom Dez 29, 2019 18:13

uma algebra é definida por (S,+),onde S é um conjunto e "+" o operador soma dos elementos de S.
mostre que:
a)existe o operador multiplicativo " * ".
b)existe o elemento neutro da soma,e o elemento unidade do operador multiplicativo.
c)existe o elemento simetrico da soma e o elemento neutro multiplicativo.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: algebra

Mensagempor adauto martins » Dom Dez 29, 2019 18:50

a)
seja a\in S,entao pela definiçao da algebra,teremos:
a + a \in S
(a + a)+a \in S
.
.
.
(((a + a)+a)+a)...)+ a\in S
essa soma contada b vezes sera
(((a + a)+a)+a)...)+ a)=a*b\in S,logo
existe o operador " * ",dito multiplicativo em S.

b)

o elemento neutro da soma,tera que satisfazer a:
a+e=a

a*e=e

pela definiçao da algebra,teremos:
(((a + a)+a)+a)...)+ a)\in S,contado "e" vezes,e

a*e=(((a + a)+a)+a)...)+ a)=e

a+e=a+e*a=e\Rightarrow 

a+((((a + a)+a)+a)...)+ a)\in S,logo
existe "e\in S
racionio analogo,mostra-se que existe o elemento unidade do operdor multiplicativo
que deve satisfazer a condiçao
a*u=a(faça-o como exercicio)

c)

usando racionio analogo ao exposto acima termine-o!
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: algebra

Mensagempor adauto martins » Seg Dez 30, 2019 12:11

ps-desconsidere a demonstraçao da letra b),pois esta ficou imprecisa,indeterminada...vale para mostrar que sempre existe um elemento em S,cuja soma esta em S.mas nao precisou o elemento que em nosso caso é o elemento neutro da soma.geralmente nos livros de algebra,esses elementos entram como definiçao dada pelo autor.mas sao de suma importancia para o desenvolver da teroria,em especifico,teoria dos numeros.quando eu tiver a forma precisa de mostrar tais elementos,eu a posto,no mais,obrigado...adauto martins
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: algebra

Mensagempor adauto martins » Sex Jan 03, 2020 17:33

resolverei as letras b) e c) de forma muito elementar,mas concisa...

b)´

a+e=a
como a \in S\Rightarrow a+e \in S\Rightarrow e\in S

a*u=a
como a \in S\Rightarrow a*u \in S\Rightarrow u\in S

c)

a+b=e
como mostramos acima que existe o elemento neutro do operador soma "e",entao

e \in S\Rightarrow a+b \in S\Rightarrow b\in S
o inverso do operador multiplicativo fica como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59