• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Operações com números inteiros

Operações com números inteiros

Mensagempor Danilo Dias Vilela » Sáb Mar 06, 2010 01:22

Se puderem me ajudar na seguinte questão:

1) Numa divisão inteira, o divisor é 12, o quociente é uma unidade maior que o divisor e o resto, uma unidade menor que o divisor. Qual é o valor do dividendo?

GABARITO: 167

Estou tento dificuldade pois acho que tenho que arbitrar um valor e não consigo chegar a esse valor. Desde já agradeço a ajuda.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Operações com números inteiros

Mensagempor Molina » Sáb Mar 06, 2010 14:46

Danilo Dias Vilela escreveu:Se puderem me ajudar na seguinte questão:

1) Numa divisão inteira, o divisor é 12, o quociente é uma unidade maior que o divisor e o resto, uma unidade menor que o divisor. Qual é o valor do dividendo?

GABARITO: 167

Estou tento dificuldade pois acho que tenho que arbitrar um valor e não consigo chegar a esse valor. Desde já agradeço a ajuda.

Boa tarde, Danilo.

Este problema é mais fácil do que parece, veja:

Dividendo = Divisor x Quociente + Resto
Dividendo = 12 x (Divisor + 1) + (Divisor - 1)
Dividendo = 12 x 13 + 11
Dividendo = 156 + 11
Dividendo = 167


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}