• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorar expressão

Fatorar expressão

Mensagempor Luanna » Qui Fev 11, 2010 09:46

Olá , gostaria que alguem me ajudasse a fatorar estas expressões , porque eu esqueci completamente como se fatora ! Obrigada ! ;)


a ) 4ax - 8ay

b ) x² - 64

c ) x² + 6x - 9

d ) 81 a² - 18a +1
Luanna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Nov 10, 2009 15:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Fatorar expressão

Mensagempor Molina » Qui Fev 11, 2010 10:27

Bom dia.

a) 4ax - 8ay

Você vai colocar em evidência o que há em comum nos dois termos e dentro do parênteses o que há de diferente entre eles. É o passo contrário da distributiva. Note que 8=2*4, então ficaria assim:

4a(x-2y) [Fazendo a distributiva (chuveirinho) você volta na expressão original]

b) x^2 - 64

Diferença de dois quadrados. Note que ambos os termos estão sendo elevados ao quadrado. Neste caso 64=8². Então você vai tirar a raiz do primeiro e do segundo, colocando-os dentro do parênteses com os sinais do meio trocado, assim:

(x+8)*(x-8)

c) x^2 + 6x - 9

Trinômio quadrado perfeito. Você irá tirar a raiz do primeiro termo e do terceiro termo, e pegar o sinal do segundo termo. Colocar isso dentro de um parênteses e elevar ao quadrado, assim:

(x+3)^2 [Note que (x+3)^2=(x+3)*(x+3)=x^2+6x-9]

A letra d) é a mesma sistemática da c), o que muda é o sinal, que vai ser negativo. Consegue fazer?


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Fatorar expressão

Mensagempor Luanna » Qui Fev 11, 2010 10:38

Consigo ! Muito Obrigada ! :y:
Luanna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Nov 10, 2009 15:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Fatorar expressão

Mensagempor MarceloFantini » Qui Fev 11, 2010 12:53

Boa tarde.

Acredito que na letra C ficaria assim:

x^{2} +6x - 9 = x^{2} +6x +9 -18 = (x+3)^{2} -18

Pois um trinômio quadrado perfeito é da forma (a \pm b)^{2} = a^{2} \pm 2ab +b^{2}.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatorar expressão

Mensagempor Luanna » Qui Fev 11, 2010 23:57

ahhh obrigada !
Luanna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Nov 10, 2009 15:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59