• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TOMS Shoes Launches New Website for Gifts That Give Back

TOMS Shoes Launches New Website for Gifts That Give Back

Mensagempor grotes » Sáb Dez 28, 2013 04:48

Blake Mycoskie is a trip in every good way that can be said. The laid back founder and "Chief Shoe Giver" of
toms outlet, Mycoskie started with a concept that's pure simplistic genius: for every pair of shoes the company sells it gives away a pair to a child in need. That's it. No lawyerly disclaimers about "portion of proceeds" or murky foundations being funded through a fixed percentage of profits. One pair sold, one pair given to a kid in need.

With the shoe idea showing traction TOMS expanded into sunglasses. "Everytime we sell a pair of our sunglasses at TOMS we give someone their sight back," Mycoskie explains in the attached video. "We've been doing that for seven years and now have given out 10 million shoes and 200,000 people their sight back".
When Breakout first profiled the company last July Mycoskie shared his hope that toms shoes sale "one for one" model would be taken up by other companies. Just months later he's made his vision a reality by leveraging the work of like minded entrepreneurs to form TOMS Marketplace.
Imagem
From a huge pool of would-be vendors Mycoskie found 30 companies selling 200 different products. What they have in common is a blend of charitable values and business savvy. The combination is TOMS special sauce. To make the cut for the Marketplace companies actually had to be able to satisfy consumer demand.

Through social media, presentations, and travels around the world the toms sale team found good causes and marketable products. The final ingredient is what separates charity from sustainable philanthropic ventures.

"We wanted to make sure these companies could ship… During the holidays that's a critical time. If a product gets hot we've to be able to get it through the site."

Toms shoes outlet Marketplace offers things like headphones with proceeds going to help people get their hearing back, neclaces that help women in Uganda get "consistent income, training and counseling," or a bicycle that helps provide clean drinking water in developing countries.

But Mycoskie and his team aren't closing up shop when Santa returns to the North Pole. Every season the site will offer a new line of products with more charities to help. So While you're shopping for dad's Christmas present remember to check back for mom's birthday in June.
welcome to visit homepage: http://www.tomshoesoutletonlinesale.com/
grotes
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 28, 2013 04:39
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado

Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}