• Anúncio Global
    Respostas
    Exibições
    Última mensagem

números inteiros

números inteiros

Mensagempor thadeu » Qui Nov 19, 2009 11:41

Quantos são os números inteiros p tais que 50^3<5^p<50^4?
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: números inteiros

Mensagempor Molina » Qui Nov 19, 2009 13:14

thadeu escreveu:Quantos são os números inteiros p tais que 50^3<5^p<50^4?


Boa tarde. Vamos tentar resolver isso usando logaritimo na base 10:

50^3<5^p<50^4

log50^3<log5^p<log50^4

3*log50<p*log5<4*log50

3*log(5*10)<p*log5<4*log(5*10)

3*[log5 + log10]<p*log5<4*[log5 + log10]

3*[log5 + 1]<p*log5<4*[log5 + 1]

3A + 3<pA<4A + 4 (A = log5)

3+\frac{3}{A}<p<4+\frac{4}{A}

Temos que 3+\frac{3}{A}<8 e 4+\frac{4}{A}>9

Logo p pode ser 8 ou 9. Dois números inteiros.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: números inteiros

Mensagempor thadeu » Qui Nov 19, 2009 13:46

Beleza Molina!
Eu só não consegui entender as duas últimas linhas.
Esses exercícios são de uma lista que me passaram e eu achei interessante colocar no site para que possamos ver diferentes maneiras de resolução.

Eu resolvi essa questão da seguinte maneira:
Fazendo 50=(2 \times 5^2)

(2 \times 5^2)^3<5^p<(2 \times 5^2)^4

2^3 \times 5^6<5^p<2^4 \times 5^8

Dividindo todos por 5^6

\frac{2^3 \times 5^6}{5^6}<\frac{5^p}{5^6}<\frac{2^4 \times 5^8}{5^6}

8<5^{p-6}<400

Entre 8 e 400 as seguintes potências de base 5:


5^1=5\,,\,\,5^2=25\,,\,\,5^3=125\,,\,\,5^4=625

Repare que apenas 5^2\,\,\,e\,\,\,5^3 estão entre 8 e 400.

5^{p-6}=5^2\,\Rightarrow\,p-6=2\,\Rightarrow\,p=8

5^{p-6}=5^3\,\Rightarrow\,p-6=3\,\Rightarrow\,p=9

Resposta igual a 2.
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}