• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra

Álgebra

Mensagempor marinalcd » Ter Ago 13, 2013 21:14

Estou começando a estudar esse assunto e estou com dificuldade para resolver esta questão. Alguém pode me ajudar?

Seja os subconjuntos:

A_{0}\,=\,\{\,4k\,|\,k\,\in\,\mathbb{Z}\,\} , A_{1}\,=\,\{\,4k\,+\,1\,|\,k\,\in\, \mathbb{Z}\,\}, A_{2}\,=\,\{\,4k\,+\,2\,|\,k\,\in\, \mathbb{Z}\,\}, A_{3}\,=\,\{\,4k\,+\,3\,|\,k\,\in\, \mathbb{Z}\,\}.

Mostre que os conjuntos A_{0}\,,\, A_{1}\,,\, A_{2}\,,\, A_{3} formam uma partição de\mathbb{Z}.

Obrigada!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra

Mensagempor amandasousa_m » Qui Ago 15, 2013 08:47

Números inteiros formam o conjunto de números positivos ou negativos não decimais, certo?

Portanto, se k é um número inteiro, ele satisfaz esta condição. Se você multiplica ou soma qualquer número natural a um inteiro, o produto ou a soma tem de estar dentro do conjunto dos inteiros.

É nesse sentido.
amandasousa_m
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sex Jul 19, 2013 09:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra

Mensagempor marinalcd » Qui Ago 15, 2013 12:55

Oi!
Olha só, o seu raciocínio está certo, eu também pensei assim, o problema é que eu tenho que mostrar isso, desenvolver. A dificuldade está em estabelecer uma prova para este conceito. Mas mesmo assim, obrigada pela ajuda!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra

Mensagempor amandasousa_m » Qui Ago 15, 2013 20:17

Pensei nisso logo que respondi haha

Para que todos esses conjuntos sejam partições eles devem ser disjuntos (a interseção entre eles tem que ser igual a zero), a união entre os quatro conjuntos tem que ser igual a zero e nenhum deles devem ser vazios.

Acho que atruibuindo valores aleatórios ou mesmo um embasamento genérico pode demonstrar que os subconjuntos satisfazem as condições.
amandasousa_m
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sex Jul 19, 2013 09:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra

Mensagempor MateusL » Sex Ago 16, 2013 12:56

Se A_0,\ A_1,\ A_2,\ A_3 são uma partição de \mathbb{Z}, então todos esses conjuntos são dois a dois disjuntos, a união de todos eles é igual a \mathbb{Z} e nenhum desses conjuntos é vazio.

Então tens que provar que todo número inteiro pertencerá a um e somente um desses quatro conjuntos e que nenhum desses conjuntos é vazio.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Álgebra

Mensagempor marinalcd » Sex Ago 23, 2013 14:59

O que seria o conjunto quociente Z/R? Tentei montar um conjunto, mas não estou entendendo..
Alguém pode me ajudar?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra

Mensagempor MateusL » Sex Ago 23, 2013 16:01

Na verdade, acho que a Amanda se confundiu na explicação.

Esses quatro conjuntos particionam o conjunto dos inteiros da seguinte maneira:

A_0: contém todos os múltiplos de 4, ou seja, números que deixam resto zero na divisão por 4.
A_1: contém todos os números que deixam resto 1 quando divididos por 4.
A_2: contém todos os números que deixam resto 2 quando divididos por 4.
A_3: contém todos os números que deixam resto 3 quando divididos por 4.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59