por marinalcd » Ter Ago 13, 2013 21:14
Estou começando a estudar esse assunto e estou com dificuldade para resolver esta questão. Alguém pode me ajudar?
Seja os subconjuntos:

Mostre que os conjuntos

formam uma partição de

Obrigada!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por amandasousa_m » Qui Ago 15, 2013 08:47
Números inteiros formam o conjunto de números positivos ou negativos não decimais, certo?
Portanto, se k é um número inteiro, ele satisfaz esta condição. Se você multiplica ou soma qualquer número natural a um inteiro, o produto ou a soma tem de estar dentro do conjunto dos inteiros.
É nesse sentido.
-
amandasousa_m
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sex Jul 19, 2013 09:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por marinalcd » Qui Ago 15, 2013 12:55
Oi!
Olha só, o seu raciocínio está certo, eu também pensei assim, o problema é que eu tenho que mostrar isso, desenvolver. A dificuldade está em estabelecer uma prova para este conceito. Mas mesmo assim, obrigada pela ajuda!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por amandasousa_m » Qui Ago 15, 2013 20:17
Pensei nisso logo que respondi haha
Para que todos esses conjuntos sejam partições eles devem ser disjuntos (a interseção entre eles tem que ser igual a zero), a união entre os quatro conjuntos tem que ser igual a zero e nenhum deles devem ser vazios.
Acho que atruibuindo valores aleatórios ou mesmo um embasamento genérico pode demonstrar que os subconjuntos satisfazem as condições.
-
amandasousa_m
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sex Jul 19, 2013 09:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MateusL » Sex Ago 16, 2013 12:56
Se

são uma partição de

, então todos esses conjuntos são dois a dois disjuntos, a união de todos eles é igual a

e nenhum desses conjuntos é vazio.
Então tens que provar que todo número inteiro pertencerá a um e somente um desses quatro conjuntos e que nenhum desses conjuntos é vazio.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por marinalcd » Sex Ago 23, 2013 14:59
O que seria o conjunto quociente Z/R? Tentei montar um conjunto, mas não estou entendendo..
Alguém pode me ajudar?
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por MateusL » Sex Ago 23, 2013 16:01
Na verdade, acho que a Amanda se confundiu na explicação.
Esses quatro conjuntos particionam o conjunto dos inteiros da seguinte maneira:

: contém todos os múltiplos de 4, ou seja, números que deixam resto zero na divisão por 4.

: contém todos os números que deixam resto 1 quando divididos por 4.

: contém todos os números que deixam resto 2 quando divididos por 4.

: contém todos os números que deixam resto 3 quando divididos por 4.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- algebra l
por ehrefundini » Qui Mar 05, 2009 08:34
- 1 Respostas
- 7373 Exibições
- Última mensagem por Molina

Qui Mar 05, 2009 21:50
Álgebra
-
- algebra
por uspsilva » Sex Mar 13, 2009 13:03
- 1 Respostas
- 3120 Exibições
- Última mensagem por Molina

Sex Mar 13, 2009 15:22
Pedidos
-
- Algebra
por mattheusramos14 » Ter Ago 03, 2010 01:26
- 1 Respostas
- 2643 Exibições
- Última mensagem por MarceloFantini

Ter Ago 03, 2010 13:37
Álgebra Elementar
-
- ALGEBRA
por JOHNY » Sex Set 03, 2010 23:50
- 1 Respostas
- 2623 Exibições
- Última mensagem por MarceloFantini

Sáb Set 04, 2010 13:12
Álgebra Elementar
-
- álgebra
por Eliana Fidelis » Dom Out 24, 2010 13:52
- 1 Respostas
- 2573 Exibições
- Última mensagem por Adriano Tavares

Ter Mar 08, 2011 20:37
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.