• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Congruência] Determinar o resto de uma divisão.

[Congruência] Determinar o resto de uma divisão.

Mensagempor Pedro Silveira » Sex Mai 24, 2013 17:05

Sabendo que n é multiplo de 4, determine o resto da divisão de:

1^{n}\hspace{1}+\hspace{1}2^{n}\hspace{1}+\hspace{1}...\hspace{1}+\hspace{1}9^{n}\hspace{5}por\hspace{5}10.

Eu tentei dessa forma:

\newline 1^{n} \hspace{1} \equiv \hspace{1} 1 (mod\hspace{5}10)\newline 2^{4} \hspace{1} \equiv \hspace{1} 6 (mod\hspace{5}10) \newline (3^{4})^{k} \hspace{1} \equiv \hspace{1} 1 (mod\hspace{5}10)\Rightarrow 3^{4k} \hspace{1} \equiv \hspace{1} 1 (mod\hspace{5}10) \Rightarrow 3^{n} \hspace{1} \equiv \hspace{1} 1 (mod\hspace{5}10) \newline 4^{2} \hspace{1} \equiv \hspace{1} 6 (mod\hspace{5}10)

A partir daí eu fiquei sem ideia...
Pedro Silveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mai 24, 2013 16:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.