• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda em Potenciação

Ajuda em Potenciação

Mensagempor Bielto » Qua Jul 18, 2012 15:34

Bom, pra não dizerem que eu não tentei, eu fiz até onde deu

(Olimpíada de Matemática) O valor de 4^{4}.9^{4}.4^{9}.9^{9} é :

Então, eu fiz assim: (2^2)^4.(3^2)^4.(2^2)^9.(3^2)^9

Como a ordem dos fatores não altera o produto.

(2^2)^4.(2^2)^9.(3^2)^4.(3^2)^9 =

2^8.2^1^8.3^8.3^1^8 =

= 2^2^6.3^2^6

Parei ai. Não consegui resolver o restante.
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Ajuda em Potenciação

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 16:02

Bielto escreveu:Bom, pra não dizerem que eu não tentei, eu fiz até onde deu

(Olimpíada de Matemática) O valor de 4^{4}.9^{4}.4^{9}.9^{9} é :

Então, eu fiz assim: (2^2)^4.(3^2)^4.(2^2)^9.(3^2)^9

Como a ordem dos fatores não altera o produto.

(2^2)^4.(2^2)^9.(3^2)^4.(3^2)^9 =

2^8.2^1^8.3^8.3^1^8 =

= 2^2^6.3^2^6

Parei ai. Não consegui resolver o restante.

Está faltando as alternativas:
a) 13^{13}
b) 13^{36}
c) 36^{13}
d) 36

Você poderia continuar seu raciocínio:
2^{26}*3^{26} = 6^{26} = 6^{13}*6^{13} = 36^{13}

Ou:
4^4*4^9*9^4*9^4 = 4^{13}*9^{13} = 36^{13}

:y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em Potenciação

Mensagempor Bielto » Qui Jul 19, 2012 12:32

Desculpa pela minha falta de atenção, esqueci de postar as alternativas.

Então, eu não sabia que poderia multiplicar {2}^2^6.{3}^2^6, por isso não continuei com o raciocínio.

E outra coisa, depois que eu multiplicar {2}^2^6.{3}^2^6 não era pra dar {6}^5^2.?

Por quê? Que deu {6}^2^6 ? Não entendi, a única propriedade que eu conheço nesse caso para resolver é a {a^}^m.{a}^n={a}^m^+^n.

Conserva-se a base e multiplica-se os expoentes. No caso você conservou os expoentes e multiplicou as bases. Isso pode?
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Ajuda em Potenciação

Mensagempor Arkanus Darondra » Qui Jul 19, 2012 13:24

Pode. Talvez você esteja acostumado a "ir". Como eu disse no outro tópico, aprenda o "inverso" também:

(a*b)^n = a^n*b^n
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}