• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em Indução Matemática

Dúvida em Indução Matemática

Mensagempor Luiz Junior » Seg Jun 18, 2012 19:45

Peço a ajuda para que alguém habilitado resolva o exercício abaixo para mim por gentileza.

Prove que: 2.1 + 2.2 + 2.3 + . . . + 2 n = n² + n, para n ? 1.

1)passo base: (eu consegui fazer)

P(1) = 2.1+2.2+2.3+...+2.1={1}^{2}+1=2, é verdadeiro para n=1

2) passo indutivo:

Para n= k, teremos: 2.1 + 2. 2 + 2.3 + . . . + 2k = k² + k, k ? 1

Deve-se mostrar que: 2 .1 +2.2 + 2.3 + . . . + 2k + 2 ( k + 1)= ( k² +1 )² + k + 1

Continue a demonstração.....

Daqui pra frente que não consigo fazer!


Desde já agradeço pela atenção e colaboração.
Luiz Junior
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jun 18, 2012 19:41
Formação Escolar: SUPLETIVO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Dúvida em Indução Matemática

Mensagempor MarceloFantini » Seg Jun 18, 2012 23:32

Bastava perceber que 2 \cdot 1 + 2 \cdot 2 + \ldots + 2 \cdot n = 2 \cdot (1+2+\ldots+n) = 2 \cdot \frac{n(n+1)}{2} = n^2 +n.

Continuando da sua demonstração, note que 2 \cdot (1+2+\ldots + n + n+1) = 2 \cdot (1+2+\ldots +n) + 2(n+1) que por hipótese temos 2(1+2+\ldots+n) = n^2+n, daí

2\cdot(1+2+\ldots+n) + 2(n+1) = n^2 +n + 2(n+1) = n^2 +n + 2n + 2 =
=  n^2 +2n +1 + n + 1 = (n+1)^2 + (n+1).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida em Indução Matemática

Mensagempor Luiz Junior » Ter Jun 19, 2012 12:49

Fico grato Marcelo Fantini.

Vlw pela explicação... Passando a entender Indução!

Abraço!
Luiz Junior
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jun 18, 2012 19:41
Formação Escolar: SUPLETIVO
Área/Curso: Sistemas de Informação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59