• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação dúvida!

Radiciação dúvida!

Mensagempor LuizCarlos » Ter Mai 15, 2012 18:57

Olá amigo professores, como resolvo uma conta desse tipo!

\sqrt[]{5+\sqrt[]{24}}

E outra desse tipo:

\sqrt[]{4.\sqrt[]{6}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Radiciação dúvida!

Mensagempor LuizAquino » Ter Mai 15, 2012 20:05

LuizCarlos escreveu:Olá amigo professores, como resolvo uma conta desse tipo!


\sqrt{5+\sqrt{24}}[/quote]

Note que:

\sqrt{5+\sqrt{24}} = \sqrt{5+\sqrt{2^2 \cdot 2 \cdot 3}}

= \sqrt{5 + \sqrt{2^2} \cdot \sqrt{2} \cdot \sqrt{3}}

= \sqrt{5 + 2\sqrt{2}\sqrt{3}}

Substituindo 5 por 2 + 3, temos que:

= \sqrt{2 + 3 + 2\sqrt{2}\sqrt{3}}

Arrumando essa expressão, temos que:

= \sqrt{2 + 2\sqrt{2}\sqrt{3} + 3}

= \sqrt{\sqrt{2}^2 + 2\sqrt{2}\sqrt{3} + \sqrt{3}^2}

Lembrando do produto notável a^2 + 2ab + b^2 = (a + b)^2 , temos que:

= \sqrt{\left(\sqrt{2} + \sqrt{3}\right)^2}

= \sqrt{2} + \sqrt{3}

Em resumo, temos que:

\sqrt{5+\sqrt{24}} = \sqrt{2} + \sqrt{3}

LuizCarlos escreveu:E outra desse tipo:

\sqrt{4\cdot\sqrt{6}}


Note que:

\sqrt{4\cdot \sqrt{6}} = \sqrt{4} \cdot \sqrt{\sqrt{6}} = 2\sqrt[4]{6}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Radiciação dúvida!

Mensagempor LuizCarlos » Qua Mai 16, 2012 14:30

LuizAquino escreveu:
LuizCarlos escreveu:Olá amigo professores, como resolvo uma conta desse tipo!


\sqrt{5+\sqrt{24}}


Note que:

\sqrt{5+\sqrt{24}} = \sqrt{5+\sqrt{2^2 \cdot 2 \cdot 3}}

= \sqrt{5 + \sqrt{2^2} \cdot \sqrt{2} \cdot \sqrt{3}}

= \sqrt{5 + 2\sqrt{2}\sqrt{3}}

Substituindo 5 por 2 + 3, temos que:

= \sqrt{2 + 3 + 2\sqrt{2}\sqrt{3}}

Arrumando essa expressão, temos que:

= \sqrt{2 + 2\sqrt{2}\sqrt{3} + 3}

= \sqrt{\sqrt{2}^2 + 2\sqrt{2}\sqrt{3} + \sqrt{3}^2}

Lembrando do produto notável a^2 + 2ab + b^2 = (a + b)^2 , temos que:

= \sqrt{\left(\sqrt{2} + \sqrt{3}\right)^2}

= \sqrt{2} + \sqrt{3}

Em resumo, temos que:

\sqrt{5+\sqrt{24}} = \sqrt{2} + \sqrt{3}

LuizCarlos escreveu:E outra desse tipo:

\sqrt{4\cdot\sqrt{6}}


Note que:

\sqrt{4\cdot \sqrt{6}} = \sqrt{4} \cdot \sqrt{\sqrt{6}} = 2\sqrt[4]{6}[/quote]

Olá amigo LuizAquino, obrigado por me ajudar! você é muito legal! consegui entender! gostaria de fazer uma pergunta, a única maneira de resolver esses tipos de contas, é da forma como você me ensinou, ou existe outro maneira, pois vejo pessoas resolvendo através de uma fórmula, aquela fórmula de radicais duplos, que por sinal, estava olhando, e não consegui entender direito!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Radiciação dúvida!

Mensagempor LuizAquino » Sex Mai 18, 2012 13:26

LuizCarlos escreveu:(...) a única maneira de resolver esses tipos de contas, é da forma como você me ensinou, ou existe outro maneira, pois vejo pessoas resolvendo através de uma fórmula, aquela fórmula de radicais duplos, que por sinal, estava olhando, e não consegui entender direito!


Eu defendo a ideia de que simplesmente decorar fórmulas prontas não é uma boa estratégia.

Por outro lado, se você sabe deduzir a fórmula, então aí sim você está seguindo uma boa estratégia.

Nesse contexto, eu recomendo que você estude a maneira de deduzir a fórmula para simplificar o chamado radical duplo.

Existem várias páginas na Internet exibindo a dedução. Por exemplo, vide a página abaixo.

Matemática Muito Fácil - Álgebra - Transformação de Radicais Duplos
http://www.matematicamuitofacil.com/radicalduplo.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: