por LuizCarlos » Ter Mai 15, 2012 18:57
Olá amigo professores, como resolvo uma conta desse tipo!
E outra desse tipo:
-
LuizCarlos
- Colaborador Voluntário
-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por LuizCarlos » Qua Mai 16, 2012 14:30
LuizAquino escreveu:LuizCarlos escreveu:Olá amigo professores, como resolvo uma conta desse tipo!
Note que:
Substituindo 5 por 2 + 3, temos que:
Arrumando essa expressão, temos que:
Lembrando do produto notável
, temos que:
Em resumo, temos que:
LuizCarlos escreveu:E outra desse tipo:
Note que:
[/quote]
Olá amigo LuizAquino, obrigado por me ajudar! você é muito legal! consegui entender! gostaria de fazer uma pergunta, a única maneira de resolver esses tipos de contas, é da forma como você me ensinou, ou existe outro maneira, pois vejo pessoas resolvendo através de uma fórmula, aquela fórmula de radicais duplos, que por sinal, estava olhando, e não consegui entender direito!
-
LuizCarlos
- Colaborador Voluntário
-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por LuizAquino » Sex Mai 18, 2012 13:26
LuizCarlos escreveu:(...) a única maneira de resolver esses tipos de contas, é da forma como você me ensinou, ou existe outro maneira, pois vejo pessoas resolvendo através de uma fórmula, aquela fórmula de radicais duplos, que por sinal, estava olhando, e não consegui entender direito!
Eu defendo a ideia de que simplesmente decorar fórmulas prontas não é uma boa estratégia.
Por outro lado, se você sabe deduzir a fórmula, então aí sim você está seguindo uma boa estratégia.
Nesse contexto, eu recomendo que você estude a maneira de deduzir a fórmula para simplificar o chamado radical duplo.
Existem várias páginas na Internet exibindo a dedução. Por exemplo, vide a página abaixo.
Matemática Muito Fácil - Álgebra - Transformação de Radicais Duploshttp://www.matematicamuitofacil.com/radicalduplo.html
-
LuizAquino
- Colaborador Moderador - Professor
-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida radiciação
por sullivan » Ter Jan 24, 2012 13:41
- 3 Respostas
- 1700 Exibições
- Última mensagem por LuizAquino
Ter Jan 24, 2012 17:00
Álgebra Elementar
-
- Radiciação - Dúvida
por Danilo » Qui Ago 09, 2012 22:37
- 2 Respostas
- 1320 Exibições
- Última mensagem por Danilo
Sex Ago 10, 2012 00:04
Álgebra Elementar
-
- Dúvida - radiciação
por Danilo » Sex Ago 10, 2012 01:53
- 3 Respostas
- 1535 Exibições
- Última mensagem por Danilo
Sex Ago 10, 2012 11:22
Álgebra Elementar
-
- Dúvida - {radiciação}
por Danilo » Sex Ago 10, 2012 11:34
- 2 Respostas
- 1475 Exibições
- Última mensagem por Danilo
Sex Ago 10, 2012 11:47
Álgebra Elementar
-
- Radiciação - dúvida
por Danilo » Sex Ago 10, 2012 18:33
- 2 Respostas
- 1427 Exibições
- Última mensagem por Danilo
Sex Ago 10, 2012 20:01
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
Logo, o afixo é
.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.