• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação dúvida!

Radiciação dúvida!

Mensagempor LuizCarlos » Ter Mai 15, 2012 18:57

Olá amigo professores, como resolvo uma conta desse tipo!

\sqrt[]{5+\sqrt[]{24}}

E outra desse tipo:

\sqrt[]{4.\sqrt[]{6}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Radiciação dúvida!

Mensagempor LuizAquino » Ter Mai 15, 2012 20:05

LuizCarlos escreveu:Olá amigo professores, como resolvo uma conta desse tipo!


\sqrt{5+\sqrt{24}}[/quote]

Note que:

\sqrt{5+\sqrt{24}} = \sqrt{5+\sqrt{2^2 \cdot 2 \cdot 3}}

= \sqrt{5 + \sqrt{2^2} \cdot \sqrt{2} \cdot \sqrt{3}}

= \sqrt{5 + 2\sqrt{2}\sqrt{3}}

Substituindo 5 por 2 + 3, temos que:

= \sqrt{2 + 3 + 2\sqrt{2}\sqrt{3}}

Arrumando essa expressão, temos que:

= \sqrt{2 + 2\sqrt{2}\sqrt{3} + 3}

= \sqrt{\sqrt{2}^2 + 2\sqrt{2}\sqrt{3} + \sqrt{3}^2}

Lembrando do produto notável a^2 + 2ab + b^2 = (a + b)^2 , temos que:

= \sqrt{\left(\sqrt{2} + \sqrt{3}\right)^2}

= \sqrt{2} + \sqrt{3}

Em resumo, temos que:

\sqrt{5+\sqrt{24}} = \sqrt{2} + \sqrt{3}

LuizCarlos escreveu:E outra desse tipo:

\sqrt{4\cdot\sqrt{6}}


Note que:

\sqrt{4\cdot \sqrt{6}} = \sqrt{4} \cdot \sqrt{\sqrt{6}} = 2\sqrt[4]{6}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Radiciação dúvida!

Mensagempor LuizCarlos » Qua Mai 16, 2012 14:30

LuizAquino escreveu:
LuizCarlos escreveu:Olá amigo professores, como resolvo uma conta desse tipo!


\sqrt{5+\sqrt{24}}


Note que:

\sqrt{5+\sqrt{24}} = \sqrt{5+\sqrt{2^2 \cdot 2 \cdot 3}}

= \sqrt{5 + \sqrt{2^2} \cdot \sqrt{2} \cdot \sqrt{3}}

= \sqrt{5 + 2\sqrt{2}\sqrt{3}}

Substituindo 5 por 2 + 3, temos que:

= \sqrt{2 + 3 + 2\sqrt{2}\sqrt{3}}

Arrumando essa expressão, temos que:

= \sqrt{2 + 2\sqrt{2}\sqrt{3} + 3}

= \sqrt{\sqrt{2}^2 + 2\sqrt{2}\sqrt{3} + \sqrt{3}^2}

Lembrando do produto notável a^2 + 2ab + b^2 = (a + b)^2 , temos que:

= \sqrt{\left(\sqrt{2} + \sqrt{3}\right)^2}

= \sqrt{2} + \sqrt{3}

Em resumo, temos que:

\sqrt{5+\sqrt{24}} = \sqrt{2} + \sqrt{3}

LuizCarlos escreveu:E outra desse tipo:

\sqrt{4\cdot\sqrt{6}}


Note que:

\sqrt{4\cdot \sqrt{6}} = \sqrt{4} \cdot \sqrt{\sqrt{6}} = 2\sqrt[4]{6}[/quote]

Olá amigo LuizAquino, obrigado por me ajudar! você é muito legal! consegui entender! gostaria de fazer uma pergunta, a única maneira de resolver esses tipos de contas, é da forma como você me ensinou, ou existe outro maneira, pois vejo pessoas resolvendo através de uma fórmula, aquela fórmula de radicais duplos, que por sinal, estava olhando, e não consegui entender direito!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Radiciação dúvida!

Mensagempor LuizAquino » Sex Mai 18, 2012 13:26

LuizCarlos escreveu:(...) a única maneira de resolver esses tipos de contas, é da forma como você me ensinou, ou existe outro maneira, pois vejo pessoas resolvendo através de uma fórmula, aquela fórmula de radicais duplos, que por sinal, estava olhando, e não consegui entender direito!


Eu defendo a ideia de que simplesmente decorar fórmulas prontas não é uma boa estratégia.

Por outro lado, se você sabe deduzir a fórmula, então aí sim você está seguindo uma boa estratégia.

Nesse contexto, eu recomendo que você estude a maneira de deduzir a fórmula para simplificar o chamado radical duplo.

Existem várias páginas na Internet exibindo a dedução. Por exemplo, vide a página abaixo.

Matemática Muito Fácil - Álgebra - Transformação de Radicais Duplos
http://www.matematicamuitofacil.com/radicalduplo.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D