por karen » Sáb Mai 05, 2012 15:53
![1+\sqrt[2]{x+2}=\sqrt[2]{2x+2} 1+\sqrt[2]{x+2}=\sqrt[2]{2x+2}](/latexrender/pictures/61bd8161b9b6bdf1815e583a73ee25ba.png)
Eu resolvi da seguinte forma:
1) Elevei tudo ao quadrado para eliminar a raiz
1+x+2=2x+2
x=1
Na resposta do meu livro está x=7
O que eu fiz de errado?
-
karen
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Qui Mai 03, 2012 20:49
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Eletrônica
- Andamento: formado
por DanielFerreira » Sáb Mai 05, 2012 20:42
karen escreveu:![1+\sqrt[2]{x+2}=\sqrt[2]{2x+2} 1+\sqrt[2]{x+2}=\sqrt[2]{2x+2}](/latexrender/pictures/61bd8161b9b6bdf1815e583a73ee25ba.png)
Eu resolvi da seguinte forma:
1) Elevei tudo ao quadrado para eliminar a raiz
1+x+2=2x+2
x=1
Na resposta do meu livro está x=7
O que eu fiz de errado?
Karen,
lembre-se que: (a + b)² = a² +
2.a.b + b²
![1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2} 1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}](/latexrender/pictures/8689a83f25b9039f63c9432f598acaa6.png)
![(1 + \sqrt[]{x + 2})^2 = (\sqrt[]{2x + 2})^2 (1 + \sqrt[]{x + 2})^2 = (\sqrt[]{2x + 2})^2](/latexrender/pictures/fb4b5d36a03756211e4400ee22dd0d9f.png)
![1 + 2\sqrt[]{x + 2} + x + 2 = 2x + 2 1 + 2\sqrt[]{x + 2} + x + 2 = 2x + 2](/latexrender/pictures/d9b08cc51f5d348714016f514d0d3d23.png)
![2\sqrt[]{x + 2} = x - 1 2\sqrt[]{x + 2} = x - 1](/latexrender/pictures/884acfb35ff432082e978f33930bfa8a.png)
![(2\sqrt[]{x + 2})^2 = (x - 1)^2 (2\sqrt[]{x + 2})^2 = (x - 1)^2](/latexrender/pictures/85369d5a19c347d25de52516d32edef2.png)



VERIFICANDO QUANDO x = - 1:
![1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2} 1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}](/latexrender/pictures/8689a83f25b9039f63c9432f598acaa6.png)
![1 + \sqrt[]{- 1 + 2} = \sqrt[]{- 2 + 2} 1 + \sqrt[]{- 1 + 2} = \sqrt[]{- 2 + 2}](/latexrender/pictures/f2d2e06272ed516f0fdbeec40972f7c6.png)
![1 + \sqrt[]{1} = \sqrt[]{0} 1 + \sqrt[]{1} = \sqrt[]{0}](/latexrender/pictures/5a83dbff8e31b11a328d732fea5ccd6c.png)

Falsa!!
VERIFICANDO QUANDO x = 7:
![1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2} 1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}](/latexrender/pictures/8689a83f25b9039f63c9432f598acaa6.png)
![1 + \sqrt[]{7 + 2} = \sqrt[]{14 + 2} 1 + \sqrt[]{7 + 2} = \sqrt[]{14 + 2}](/latexrender/pictures/9872cff725d372183b532d512d879e59.png)
![1 + \sqrt[]{9} = \sqrt[]{16} 1 + \sqrt[]{9} = \sqrt[]{16}](/latexrender/pictures/1ccb09150ee58c4b82b9a3cc680a81f8.png)

Verdadeira!!
Portanto,
x = 7
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do 1º Grau - Como montar a equação
por macedo1967 » Sáb Out 07, 2017 12:53
- 1 Respostas
- 7902 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:17
Equações
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3281 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação do 1 Grau
por luanxd » Ter Jan 26, 2010 00:06
- 3 Respostas
- 5389 Exibições
- Última mensagem por Cleyson007

Qua Jan 27, 2010 20:40
Polinômios
-
- equação do 2º grau
por juniorthai » Seg Fev 08, 2010 12:05
- 2 Respostas
- 11641 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 06, 2010 20:48
Trigonometria
-
- equação do 2º grau
por juniorthai » Qui Fev 11, 2010 08:15
- 6 Respostas
- 8112 Exibições
- Última mensagem por lulopes

Sex Dez 08, 2017 20:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.