por Vennom » Dom Abr 22, 2012 23:06
Senhores, é um exercício de PG no qual eu tenho o resultado de que a raiz da equação de segundo grau se torna q=
![\frac{-13- ou + \sqrt[]{133}}{6} \frac{-13- ou + \sqrt[]{133}}{6}](/latexrender/pictures/d52b911106fadd6d63ac599d4de68a27.png)
em que q = 3 ou q = 1/3 . Alguma coisa me passou despercebida a respeito da fatoração da raiz de 133...
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Qui Abr 26, 2012 20:45
E aí Vennom, blz?!
Cara, poste a questão completa. ficará mais fácil de entender.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Vennom » Qui Abr 26, 2012 22:55
Primeiro, quero agradecer: obrigado, danjr5. Em segundo, quero pedir desculpas, pois eu deveria ter fechado o tópico assim que notei minha falta de atenção, e me justificar: eu estudo sozinho para prestar vestibular, e minhas horas de estudo são após expediente. Horário moderadamente inapropriado pelo cansaço, fato que me fez ler com falta de atenção o enunciado.
Eis que ele segue:
Livro: Fundamentos de Matemática Elementar, vol 4, questão 103.
Determine cinco números racionais em P.G. sabendo que sua soma é

e seu produto é 243.
Minha tentativa de resolução que estava correta até onde eu consegui no primeiro dia:

'considerem os . como multiplicações'.
Segunda parte:
resolvendo-se tudo isso, que é algo que me consumiu um bom pedaço de papel, tal qual eu não o encontro agora para simplesmente transcreve-lo aqui, o que se encontra será uma função do terceiro grau para q, de forma que as três raízes seriam q = 3 OU q =

OU q =
![\frac{-13-ou+\sqrt[2]{133}}{6} \frac{-13-ou+\sqrt[2]{133}}{6}](/latexrender/pictures/9332baacc6234c1765cfcdf78aa5b319.png)
. Meu erro foi, ao conferir o gabarito, não perceber que estava escrito no mesmo: q = tanto OU tanto OU tanto. Eu entendi que era q = tanto que dará tanto ou tanto. Erro de leitura. De qualquer forma, se alguém aí precisar de algo mais simples, a nível de ens médio que eu puder ajudar. xD
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Dom Abr 29, 2012 00:47
Ah, tá!!
vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Fatoração de raiz cúbica
por Paula Noia » Sáb Jun 15, 2013 21:22
- 2 Respostas
- 12162 Exibições
- Última mensagem por Paula Noia

Dom Jun 16, 2013 11:29
Cálculo: Limites, Derivadas e Integrais
-
- [Fatoração de elementos em raiz cúbica]
por Zeh Edu » Qua Abr 29, 2015 08:40
- 4 Respostas
- 4494 Exibições
- Última mensagem por Zeh Edu

Qui Abr 30, 2015 23:35
Álgebra Elementar
-
- Raiz simples
por stockl » Dom Nov 04, 2012 12:09
- 1 Respostas
- 1619 Exibições
- Última mensagem por e8group

Dom Nov 04, 2012 14:40
Teoria dos Números
-
- equação simples com raiz
por Debylow » Ter Dez 04, 2012 15:18
- 3 Respostas
- 2160 Exibições
- Última mensagem por Cleyson007

Qua Dez 05, 2012 07:52
Equações
-
- Alguem me passa esses tipos de exercícios?
por gomusalie » Qui Out 27, 2011 19:47
- 0 Respostas
- 990 Exibições
- Última mensagem por gomusalie

Qui Out 27, 2011 19:47
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.