por LuizCarlos » Ter Abr 03, 2012 10:59
Olá amigos,
Resolvi esse problema, encontrando a solução!
Mas o livro resolveu de forma diferente da forma como resolvi, dessa forma me deixando em dúvida!
Quero somente entender como o livro resolveu, pois consegui encontrar o resultado correto.
Juca está apaixonado! Para ver a namorada, ele faz uma longa viagem: 350 km a cada encontro. Numa de suas viagens, após alguns quilômetros, ele parou para um cafezinho e ainda percorreu o triplo do que já havia percorrido para chegar á cidade de sua namorada. Quantos quilômetros ele percorreu após o cafezinho.
Resolução:
a ------------------------- percurso antes do cafezinho
3a ------------------------ percurso após o cafezinho
a + 3a = 350km
4a = 350km
a =

a = 87, 5 km
87,5 km --------------------------- percurso antes do cafezinho

= 262,5 km
262,5 km -------------------------- percurso após o cafezinho
Resolução do livro:
x ----------------- Número de quilômetros percorridos após o cafezinho.
x ------------------ Número racional positivo : U = Q+

-------------- x é o triplo de

portanto

é a parte percorrida antes do cafezinho.

+ x = 350 ------------------------- Equação do problema.
Não entendi! como assim x é o triplo de

, portanto

é a parte percorrida antes do cafezinho.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por MarceloFantini » Ter Abr 03, 2012 14:59
Veja que

. Isto é equivalente a dizer que

é um terço de

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizCarlos » Ter Abr 03, 2012 16:51
MarceloFantini escreveu:Veja que

. Isto é equivalente a dizer que

é um terço de

.
MarceloFantini escreveu:Veja que

. Isto é equivalente a dizer que

é um terço de

.
Olá MarceloFantini,
entendi o que você explicou, mas não estou conseguindo entender a resolução que o livro adotou!
Não estou entendendo essa parte!

-------------- x é o triplo de

portanto

é a parte percorrida antes do cafezinho.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por ednaldo1982 » Ter Abr 03, 2012 20:36
tanto faz os nomes que se dão aos bois...
Se a parte do percurso após o cafezinho for a sua referencia então a outra dependerá diretamente desta.
Se a parte "após" é 3 vezes o que está "antes", e se chamarmos "após" de x então o "antes" é x/3, mas se chamamos o "antes" de x então o "após" será 3x.
-

ednaldo1982
- Usuário Dedicado

-
- Mensagens: 44
- Registrado em: Seg Mar 26, 2012 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por LuizCarlos » Ter Abr 03, 2012 23:42
ednaldo1982 escreveu:tanto faz os nomes que se dão aos bois...
Se a parte do percurso após o cafezinho for a sua referencia então a outra dependerá diretamente desta.
Se a parte "após" é 3 vezes o que está "antes", e se chamarmos "após" de x então o "antes" é x/3, mas se chamamos o "antes" de x então o "após" será 3x.
Olá amigo ednaldo1982, muito boa a sua forma de explicar, consegui entender!
O livro deveria explicar dessa forma! muito obrigado, por isso gosto desse site, sempre tem pessoas dispostas a ajudar e professores que entendem qual é a nossa dúvida, você foi diretamente no ponto certo da minha dúvida, era exatamente com essa questão de "após" e "antes" que estava com a pulga atrás da orelha hehehe! abraço.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por ednaldo1982 » Qua Abr 04, 2012 00:37
Estamos aqui pra compartilhar o conhecimento...
Abraço.
-

ednaldo1982
- Usuário Dedicado

-
- Mensagens: 44
- Registrado em: Seg Mar 26, 2012 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação - como montar a equação desse problema?
por _Manu » Qua Jul 04, 2012 03:37
- 7 Respostas
- 13234 Exibições
- Última mensagem por _Manu

Qui Jul 05, 2012 01:49
Sistemas de Equações
-
- Equação - Como resolver problema com equação
por macedo1967 » Seg Set 25, 2017 10:13
- 3 Respostas
- 8709 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:10
Equações
-
- Equação - Problema
por ginrj » Qui Jun 11, 2009 15:52
- 5 Respostas
- 3397 Exibições
- Última mensagem por ginrj

Sáb Jun 13, 2009 18:34
Sistemas de Equações
-
- [ PROBLEMA ] Equação
por gabrielMAT » Qua Out 19, 2011 16:45
- 2 Respostas
- 1846 Exibições
- Última mensagem por gabrielMAT

Qua Out 19, 2011 19:58
Sistemas de Equações
-
- Problema de equação
por TiagoFERD » Sáb Mar 10, 2012 09:59
- 2 Respostas
- 1439 Exibições
- Última mensagem por TiagoFERD

Sáb Mar 10, 2012 10:48
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.