por sullivan » Ter Jan 24, 2012 13:41
Boa tarde Galera queria agradecer pelo ajuda que vocês me deram apoio respondendo algumas dúvidas que tive, fiz a prova do concurso domingo foi facil apenas uma questão que não soube nem começar a resolver rsrs queria que você me desse uma luz pra saber lidar melhor com radiciação.. a pergunta era: Se o produto
![\sqrt[]{18} . \sqrt[3]{16} . x \sqrt[]{18} . \sqrt[3]{16} . x](/latexrender/pictures/7899acfd373e3645f955030e6aa01ff6.png)
é um numero racional, então x pode ser igual a ? por favor galera me ajudem mais uma vez..
-
sullivan
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sex Dez 23, 2011 10:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Ter Jan 24, 2012 14:03
sullivan escreveu:Boa tarde Galera queria agradecer pelo ajuda que vocês me deram apoio respondendo algumas dúvidas que tive, fiz a prova do concurso domingo foi facil apenas uma questão que não soube nem começar a resolver rsrs queria que você me desse uma luz pra saber lidar melhor com radiciação.. a pergunta era: Se o produto
![\sqrt{18} \cdot \sqrt[3]{16} \cdot x \sqrt{18} \cdot \sqrt[3]{16} \cdot x](/latexrender/pictures/70b4dc6462bb0a43311c5c2ada1324a0.png)
é um numero racional, então x pode ser igual a ? por favor galera me ajudem mais uma vez
Há infinitos valores que x pode assumir que tornam esse produto racional. Nesse contexto, é necessário analisar as alternativas fornecidas na questão. Por favor, poste também as alternativas.
Por exemplo, se x=0, então esse produto seria igual a 0 (que é racional).
Como outro exemplo, se
![x = \frac{1}{\sqrt{18}\sqrt[3]{16}} x = \frac{1}{\sqrt{18}\sqrt[3]{16}}](/latexrender/pictures/c03bd5754daa6b716f066a1380ea444f.png)
, então esse produto seria igual a 1 (que é racional).
Mais outro exemplo, se
![x = \sqrt{2}\sqrt[3]{4} x = \sqrt{2}\sqrt[3]{4}](/latexrender/pictures/08a76bbac0904636dd55bf6cddb19da9.png)
, então esse produto seria igual a 24 (que é racional).
Note como há várias repostas possíveis!
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por sullivan » Ter Jan 24, 2012 14:49
Perdão pela a falta de informação rsrs
a)
![\sqrt[6]{16}
b) \sqrt[6]{2}
c) \sqrt[3]{2}
d) \sqrt[]{2} \sqrt[6]{16}
b) \sqrt[6]{2}
c) \sqrt[3]{2}
d) \sqrt[]{2}](/latexrender/pictures/4ab907a528a56f8754ec6e2750a886b7.png)
-
sullivan
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sex Dez 23, 2011 10:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Radiciação dúvida!
por LuizCarlos » Ter Mai 15, 2012 18:57
- 3 Respostas
- 2188 Exibições
- Última mensagem por LuizAquino

Sex Mai 18, 2012 13:26
Álgebra Elementar
-
- Radiciação - Dúvida
por Danilo » Qui Ago 09, 2012 22:37
- 2 Respostas
- 1482 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 00:04
Álgebra Elementar
-
- Dúvida - radiciação
por Danilo » Sex Ago 10, 2012 01:53
- 3 Respostas
- 1708 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 11:22
Álgebra Elementar
-
- Dúvida - {radiciação}
por Danilo » Sex Ago 10, 2012 11:34
- 2 Respostas
- 1621 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 11:47
Álgebra Elementar
-
- Radiciação - dúvida
por Danilo » Sex Ago 10, 2012 18:33
- 2 Respostas
- 1589 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 20:01
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.