• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[simplificação de expressoes] eliminar raizes

[simplificação de expressoes] eliminar raizes

Mensagempor bira19 » Qui Out 06, 2011 23:33

\frac{\left(5-{x}^{2} \right)3x\left(2x-4 \right)}{\left(\sqrt[2]{5}+x \right)\sqrt[2]{x-2}}

Não consigo simplificar para eliminar raizes, como resolver?
bira19
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 03, 2011 20:41
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletronica
Andamento: formado

Re: [simplificação de expressoes] eliminar raizes

Mensagempor LuizAquino » Dom Out 09, 2011 09:26

bira19 escreveu:\frac{\left(5-{x}^{2} \right)3x\left(2x-4 \right)}{\left(\sqrt{5}+x \right)\sqrt{x-2}}

Não consigo simplificar para eliminar raizes, como resolver?


Siga o desenvolvimento:

\frac{\left(5-{x}^{2} \right)3x\left(2x-4 \right)}{\left(\sqrt{5}+x \right)\sqrt{x-2}} = \frac{\left[\left(5-{x}^{2} \right)3x\left(2x-4 \right)\right]\cdot \left(\sqrt{5}-x \right)}{\left[\left(\sqrt{5}+x \right)\sqrt{x-2}\right]\cdot \left(\sqrt{5}-x \right)}

= \frac{\left(5-{x}^{2} \right)3x\left(2x-4 \right)\left(\sqrt{5}-x \right)}{\left(\sqrt{5}^2 - x^2 \right)\sqrt{x-2}}

= \frac{\cancel{\left(5-{x}^{2} \right)}3x\left(2x-4 \right)\left(\sqrt{5}-x \right)}{\cancel{\left(5-{x}^{2} \right)}\sqrt{x-2}}

= \frac{3x\left(2x-4 \right)\left(\sqrt{5}-x \right)}{\sqrt{x-2}}

= \frac{\left[3x\left(2x-4 \right)\left(\sqrt{5}-x \right)\right]\cdot \sqrt{x-2}}{\left(\sqrt{x-2}\right)\cdot \sqrt{x-2}}

= \frac{3x\left(2x-4 \right)\left(\sqrt{5}-x \right)\sqrt{x-2}}{x-2}

= \frac{3x\left[2(x-2)\right]\left(\sqrt{5}-x \right)\sqrt{x-2}}{x-2}

= \frac{6x(x-2)\left(\sqrt{5}-x \right)\sqrt{x-2}}{x-2}

= \frac{6x\cancel{(x-2)}\left(\sqrt{5}-x \right)\sqrt{x-2}}{\cancel{x-2}}

= 6x\left(\sqrt{5}-x \right)\sqrt{x-2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [simplificação de expressoes] eliminar raizes

Mensagempor bira19 » Dom Out 09, 2011 17:47

Obrigado.
bira19
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 03, 2011 20:41
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletronica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59