• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Método de Gauss Jordan

Método de Gauss Jordan

Mensagempor Claudin » Sex Ago 26, 2011 03:00

Não consegui resolver dois exercícios, espero que alguém ajude pelo menos em 1 exercício explicando, passo a passo como reslver, daí e diante, terei bagagem para resolver exercícios parecidos.

1 - x+2y-3z=4
3x-y+5z=2
4x+y+(a^2-14)z=a+2



2 - x+y+z=2
2x+3y+2z=5
2x+3y+(a^2-1)z=a+1

OBS: Não coseguir utilizar chaves para representar o sistema corretamente.
OBS: A resolução pedida foi pelo método de Gauss Jordan.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Método de Gauss Jordan

Mensagempor LuizAquino » Sex Ago 26, 2011 10:45

Claudin escreveu:Não consegui resolver dois exercícios, espero que alguém ajude pelo menos em 1 exercício explicando, passo a passo como reslver, daí e diante, terei bagagem para resolver exercícios parecidos.

Eu recomendo que você assista as vídeo-aulas do canal do Nerckie:
  • Matemática - Aula 23 - Sistemas Lineares - Parte 4
  • Matemática - Aula 23 - Sistemas Lineares - Parte 5

Nessas vídeo-aulas foi resolvido um exercício passo a passo.

Claudin escreveu:OBS: Não coseguir utilizar chaves para representar o sistema corretamente.


Basta usar o comando LaTeX:

Código: Selecionar todos
[tex]
\begin{cases}
1 - x + 2y - 3z = 4 \\
3x - y + 5z = 2 \\
4x + y + (a^2 - 14)z = a + 2
\end{cases}
[/tex]


O resultado do comando é:

\begin{cases}
1 - x + 2y - 3z = 4 \\
3x - y + 5z = 2 \\
4x + y + (a^2 - 14)z = a + 2
\end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Método de Gauss Jordan

Mensagempor LuizAquino » Dom Ago 28, 2011 22:51

Veja também a discussão no tópico abaixo:

Como aplicar o metodo de Gauss Jordan nesse sistema.
viewtopic.php?f=112&t=5705
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.