• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Método de Gauss Jordan

Método de Gauss Jordan

Mensagempor Claudin » Sex Ago 26, 2011 03:00

Não consegui resolver dois exercícios, espero que alguém ajude pelo menos em 1 exercício explicando, passo a passo como reslver, daí e diante, terei bagagem para resolver exercícios parecidos.

1 - x+2y-3z=4
3x-y+5z=2
4x+y+(a^2-14)z=a+2



2 - x+y+z=2
2x+3y+2z=5
2x+3y+(a^2-1)z=a+1

OBS: Não coseguir utilizar chaves para representar o sistema corretamente.
OBS: A resolução pedida foi pelo método de Gauss Jordan.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Método de Gauss Jordan

Mensagempor LuizAquino » Sex Ago 26, 2011 10:45

Claudin escreveu:Não consegui resolver dois exercícios, espero que alguém ajude pelo menos em 1 exercício explicando, passo a passo como reslver, daí e diante, terei bagagem para resolver exercícios parecidos.

Eu recomendo que você assista as vídeo-aulas do canal do Nerckie:
  • Matemática - Aula 23 - Sistemas Lineares - Parte 4
  • Matemática - Aula 23 - Sistemas Lineares - Parte 5

Nessas vídeo-aulas foi resolvido um exercício passo a passo.

Claudin escreveu:OBS: Não coseguir utilizar chaves para representar o sistema corretamente.


Basta usar o comando LaTeX:

Código: Selecionar todos
[tex]
\begin{cases}
1 - x + 2y - 3z = 4 \\
3x - y + 5z = 2 \\
4x + y + (a^2 - 14)z = a + 2
\end{cases}
[/tex]


O resultado do comando é:

\begin{cases}
1 - x + 2y - 3z = 4 \\
3x - y + 5z = 2 \\
4x + y + (a^2 - 14)z = a + 2
\end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Método de Gauss Jordan

Mensagempor LuizAquino » Dom Ago 28, 2011 22:51

Veja também a discussão no tópico abaixo:

Como aplicar o metodo de Gauss Jordan nesse sistema.
viewtopic.php?f=112&t=5705
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.