eu sei que o resultado vai dar
, porém não consegui chegar nesse resultado help-me
eu sei que o resultado vai dar
, porém não consegui chegar nesse resultado help-me



![\frac{(a+b)[a(b-a) - b(a-b)]}{(a+b)^2(a-b)(b-a)} \frac{(a+b)[a(b-a) - b(a-b)]}{(a+b)^2(a-b)(b-a)}](/latexrender/pictures/cdd99a3fe6b34d3bbb0962c84f13d983.png)







theSinister escreveu:ainda não consegui entender.
Eu sei que em uma subtração de frações , tira-se o mmc dos denominadores ai ,divide embaixo e multiplica em cima , nesse caso para achar o mmc basta multiplicar os denominadores ficando: a²b²-a^4-b^4+b²a²,, me ajudem ae
Molina escreveu:


theSinister escreveu:bom se o mmc entre os denominadores é a²b²-a^4-b^4+b²a², eu deveria dividir por a-b² e multiplicar por a certo? depois dividir por b²-a² e multiplicar por b ,mas ainda não entendi pq q ficou a (b²-a²)-b(a²-b²)/ (a²-b²)(b²-a²)
e eu não. Ambos representam o mesmo valor, porém, eu preferi deixar ele da forma que está e não da forma que você fez (fazendo a distributiva termo a termo). Esta opção que eu fiz em deixar ele da forma fatorada
foi uma das opções que achei melhor para chegar no resultado.


Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)