• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Subconjuntos de S

Subconjuntos de S

Mensagempor felicia13 » Qua Abr 27, 2011 18:55

Provar que os subconjuntos de R4 são subespaços vectoriais de R4:

a) S = { (x1, x2, x3, x4): x1 = - 2x4, x3 - 2x2 = 0 }

b) T = L { (1,1,0,0), (1,-1,0,2), (0,2,0,-2) }


Eu sei as regras para que os subconjuntos sejam subespaços, mas nao sei como aplicar ao exercicio em si.
Agradecia ajuda.
felicia13
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 27, 2011 18:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia do Ambiente
Andamento: cursando

Re: Subconjuntos de S

Mensagempor LuizAquino » Qua Abr 27, 2011 20:53

a) S = { (x1, x2, x3, x4): x1 = - 2x4, x3 - 2x2 = 0 }

(i) Provar que 0 está em S, onde "0" representa o elemento neutro do espaço vetorial em questão, que nesse caso é \mathbb{R}^4.

Sabemos que o 0 do espaço vetorial em questão é (0, 0, 0, 0). Ou seja, x_1=x_2=x_3=x_4=0.

Pergunta: podemos afirmar que x_1 = -2x_4 e x_3- 2x_2 = 0 ?

(ii) Provar que se u e v estão em S, então u+v também está em S.
Seja u=(x_1,\, x_2,\, x_3,\, x_4) e v=(\overline{x}_1,\, \overline{x}_2,\, \overline{x}_3,\, \overline{x}_4). Como por hipótese eles estão em S, então sabemos que:
(1) x_1 = -2x_4 e x_3- 2x_2 = 0 .
(2) \overline{x}_1 = -2\overline{x}_4 e \overline{x}_3- 2\overline{x}_2 = 0 .

Por outro lado, sabemos que u+v=(x_1+\overline{x}_1,\, x_2+\overline{x}_2,\, x_3+\overline{x}_3,\, x_4+\overline{x}_4).

Pergunta: considerando as afirmações (1) e (2), podemos afirmar que x_1+\overline{x}_1 = -2(x_4+\overline{x}_4) e x_3+\overline{x}_3 - 2(x_2+\overline{x}_2)=0 ?

(iii) Provar que se u está em S e k está em R, então ku também está em S.
Seja u=(x_1,\, x_2,\, x_3,\, x_4). Como por hipótese ele está em S, então sabemos que:
(1) x_1 = -2x_4 e x_3- 2x_2 = 0 .

Por outro lado, sabemos que ku=(kx_1,\, kx_2,\, kx_3,\, kx_4).

Pergunta: considerando a afirmação (1), podemos afirmar que kx_1 = -2(kx_4) e kx_3 - 2(kx_2)=0 ?

Se a resposta para as três perguntas for sim, então S é subespaço de \mathbb{R}^4 .


b) T = L { (1,1,0,0), (1,-1,0,2), (0,2,0,-2) }
Para resolver o exercício b) use um esquema parecido com o que foi usado para o exercício a).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}