• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MDC

MDC

Mensagempor Renato_RJ » Ter Fev 15, 2011 00:19

Boa noite a todos, gostaria da correção dos colegas no desenvolvimento da questão abaixo, eu fiz, mas não sei se está certo ou se falta algum detalhe na demonstração, poderiam verificar ?

Dados a \, b \in \mathbb{N} - \{0\}. Aplicamos sucessivamente o algoritmo de Euclides temos:

a = q_{0} \cdot b + r_{1} \quad 0 \leq r_{1} \textless b

b = q_{1} \cdot r_{1} + r_{2} \quad 0 \leq r_{2} \textless r_{1}

r_{1} = q_{2} \cdot r_{2} + r_{3} \quad 0 \leq r_{3} \textless r_{2}

\vdots

r_{k} = q_{k+1} \cdot r_{k+1} + r_{k+2} \quad 0 \leq r_{k+2} \textless r_{k+1}

Como r_{1} \, \textgreater \, r_{2} \, \textgreater \, r_{3} \, \textgreater \, \dots \, \textgreater \, r_{k} \, \textgreater \, r_{k+1} \, \geq 0. Temos que existe um primeiro inteiro s tal que r_{s+1} = 0. Prove que r_{s} = M.D.C. \{a,b\}.

O que eu fiz:

Extrapolando o algoritmo temos:

r_{s-2} = q_{s-2} \cdot r_{s-1} + r_{s} \quad 0 \leq r_{s} \textless r_{s-1}

r_{s-1} = q_{s-1} \cdot r_{s} + r_{s+1}

Usando o teorema abaixo:

"Se a, b \in \mathbb{Z} e a = b \cdot q + r onde q, r \in \mathbb{Z} então M.D.C.\{a,b\} = M.D.C.\{b,r\}"

Teremos:

r_{s} = MDC\{r_{s-1},r_{s}\} = M.D.C.\{r_{s-2},r_{s-1}\} = \dots = M.D.C.\{a,b\}

A minha demonstração está correta ? A linguagem também ?

Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.