• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Bhaskara

Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Bhaskara

Mensagempor Neperiano » Sex Out 31, 2008 20:57

Bhaskara Akaria (em canarês: ಭಾಸ್ಕರಾಚಾರ್ಯ; 1114-1185, Vijayapura, Índia) foi um matemático, professor, astrólogo e astrônomo indiano, o mais importante matemático do século XII e último matemático medieval importante da Índia.

Imagem

Filho de um astrólogo famoso chamado Mahesvara, tornou-se conhecido pela complementação da obra do conterrâneo Brahmagupta, por exemplo dando pioneiramente a solução geral da conhecida equação de Pell e a solução de um problema da divisão por zero, ao afirmar também pioneiramente, em sua publicação Vija-Ganita ou Bijaganita, um trabalho em 12 capítulos, que tal quociente seria infinito.

Tornou-se chefe do observatório astronômico a Ujjain, cidade onde ficou até morrer e o principal centro matemático da Índia na sua época, fama desenvolvida por excelentes matemáticos como Varahamihira e Brahmagupta, que ali tinham trabalhado e construído uma forte escola de astronomia matemática.

Sua obra representou a culminação de contribuições hindus anteriores. Seis trabalhos seus são conhecidos e um sétimo trabalho, reivindicado para ele, é considerado por muitos historiadores como uma não falsificação posterior.

A fórmula de Bhaskara, utilizada para determinar as raízes de uma equação quadrática é:

[tex]-b+-\sqrt{b^2-4.a.c}/frac(2.a)[tex]

Livros:

- O livro mais famoso de Bhaskara Acharya é o Lilavati, obra elementar dedicada a problemas simples de aritmética, geometria plana (medidas e trigonometria elementar ) e combinatória.

- A palavra Lilavati é um nome próprio de mulher (a tradução é "Graciosa"), e a razão de ter dado esse título a seu livro é porque, provavelmente, teria desejado fazer um trocadilho comparando a elegância de uma mulher da nobreza, com a elegância dos métodos da aritmética.

- Numa tradução turca desse livro, feita 400 anos mais tarde, teria sido inventada a história de que o livro seria uma homenagem à filha que não pode se casar.
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Bhaskara

Mensagempor Tsmmakika » Sáb Set 12, 2015 05:18

I do not mind this was awesome.
Tsmmakika
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Set 12, 2015 03:00
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado


Voltar para Mensagens Matemáticas

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.