• Anúncio Global
    Respostas
    Exibições
    Última mensagem

O que falta para resolver a hipótese de riemann

Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

O que falta para resolver a hipótese de riemann

Mensagempor Douglas16 » Ter Mar 12, 2013 17:52

Com tantas descobertas no século vinte em outras áreas, como somente a Conjectura de Poincaré foi resolvida e claro outras tantas afirmações famosas desde séculos antes, e a Hipótese de Riemann não?
Que recurso matemático falta para resolver esta questão?
Seria mais provável que através da resolução desta conjectura, encontrar um algoritmo para a distribuição de números primos, ou um outro caminho mais relacionado e direto do que a Hipótese de Riemann?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: O que falta para resolver a hipótese de riemann

Mensagempor timoteo » Qua Mar 13, 2013 00:44

A princípio este site não traz a tona discussões filosóficas mas, é sempre bom falar.

Imagino que o que realente falta é uma mudança de paradigma. Muitos grandes matemáticos já se debruçaram nesta questão. O que fica realmente é que se esta questão não entrar no teorema da incompletude de Godel, então falta pouco para poder encontrar a resposta, pois, parece que os matemáticos a cada 300 anos fazem uma grande descoberta.

Porém, deixando de tanto falatório volta a me concentrar nos estudos, para quem sabe ser eu este matemático! RSRSRSRSRSR...

Boa noite, foi um prazer teclar!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: O que falta para resolver a hipótese de riemann

Mensagempor adauto martins » Sex Set 05, 2014 19:54

temos a extensao analitica de riemann para 0 < R(s) <1,dada por...Z(s)=2(2pi)^(s-1)sen((pi)s/2)T(1-s)Z(1-s),onde Z(funçao zeta),T(funçao gama),s(num.complexo),entao p/Z(s)=0,temos...sen(pis/2)=0(sol.trivial) e T(1-s)Z(1-s)=0,sol nao-trivial...de sen((pi)s)=0,os ja conhecidos s=-2k,onde k inteiro positivo...T(1-s)Z(1-s)=0,temos S(1/[e^x-1]-1/x)x^
(-s)dx=0,onde S e a integral de 0 a infinito,entao (1/[e^x-1]-1/x)=0 temos a expansao de taylor q. e igual a somas dos num. de bernoulli...cuja soma sera igual a 1/2...como S(...)dx=0,temos um ponto,pontos discretos ou uma reta(integral de lebesque no plano)...vemos q. ha uma infinidade de pontos na reta R(s)=1/2 tais q.S(...)dx=0,pois
tomando a parte complexa da S(...)dx,temos 2^(s)=2K(pi)i,i=unidade imaginaria, se K um inteiro,temos pontos de singularidades,se k=(p/q)teriamos q raizes,se k um irracional temos infinitas raizes ,tomemos entao k irracional,pois os pontos tais a integral se anula formam um conj.de medida nula no plano,onde (x,y),y e irracional e x=1/2...
unicidade do ponto 1/2 no eixo das abscissas...seja a um real,tal q. 0<a<1 e [1/(e^a-1)-1/a]=0,tem-se a=1/2 logo a S(...)dx=0 se e somente se a=1/2...
o q. se tem a provar e q. dado um ponto qquer,fora da reta R(s)=1/2,nao se tem S(...)dx=0,o q. prova a hipotese de riemann...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: O que falta para resolver a hipótese de riemann

Mensagempor Eakofuta » Sex Mar 23, 2018 05:27

Knowledge at your fingertips
Eakofuta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 23, 2018 02:00
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Formação Escolar
Andamento: formado


Voltar para Mensagens Matemáticas

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?