• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não desista desta forma

Em geral, de autoria de alunos corajosos, em momentos de admirável criatividade.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Não desista desta forma

Mensagempor fabiosousa » Sex Set 07, 2007 06:38

forca.jpg
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Não desista desta forma

Mensagempor [++] » Dom Jul 19, 2009 23:05

KKKKKKKKKKKKKKKKK HAHAHAHAHAHAHA LoL LoL LoL LoL LoL LoL :lol: :lol: :lol: :lol: :lol: :lol: ;) ;) ;) ;) ;) ;) :-P :-P :-P :-P
[++]
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Jul 15, 2009 23:55
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Não desista desta forma

Mensagempor Neperiano » Sex Out 21, 2011 16:34

Ola

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Pelo menos ele teve criatividade

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Não desista desta forma

Mensagempor andrehp » Sáb Mar 16, 2013 11:08

Nossa, a Bic do cara explodiu, fora que ele enforcou -se de forma bem humorada no final da tentativa.
"A política serve a um momento no presente, mas uma equação é eterna." [Albert Einstein]
andrehp
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Mar 16, 2013 10:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Não desista desta forma

Mensagempor Eakofuta » Sex Mar 23, 2018 05:27

All correctly written!
Eakofuta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 23, 2018 02:00
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Formação Escolar
Andamento: formado


Voltar para Pérolas

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron