• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regras do Fórum - Leia antes de postar!

Seja bem-vindo!


Escreva fórmulas no fórum, utilizando LaTeX via BBCode (english version)

Exemplos:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} ... f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} ... f(x)=\int\limits_{-\infty}^x e^{-t^2}dt
Saiba mais...

Regras do Fórum - Leia antes de postar!

Mensagempor admin » Ter Mar 20, 2012 21:51

Regras do fórum:

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios, trabalhos, provas etc.
    Caso você não tenha tentado algo pois ainda não sabe como iniciar o exercício, então informe essa dificuldade.
    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo;


  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, sempre utilize LaTeX para inserir as notações adequadas, podendo ser a partir do botão "editor de fórmulas";


  3. Digite todo o enunciado do exercício! (além de suas tentativas e dificuldades).
    O enunciado do exercício não deve ser anexado como um arquivo de imagem. Use arquivos de imagens apenas para enviar alguma figura ou ilustração que esteja presente no enunciado (ou na sua resolução) do exercício;


  4. Não toleramos o uso do fórum para spam, pornografia, brigas entre usuários, postagem de propagandas etc;


  5. Postar apenas um exercício ou dúvida por tópico;


  6. Tópicos repetidos serão removidos. Por isso, antes de postar um novo tópico, faça uma busca no fórum.



Toda a equipe do fórum Ajuda Matemática deseja bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Voltar para Informações Gerais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}