Pesquisa resultou em 2 ocorrências

Voltar à pesquisa avançada

Re: Dominio de validade!

Muito obrigado mesmo! Ajuda surreal! Consegui solucionar deste modo.. Mas agora me surgiu uma dúvida: \sqrt[2]{(x+1)^2} + \sqrt[2]{(x-1)^2} Eu não poderia simplesmente cortar o indice com o expoente? ficando: (x+1)+(x-1)=2x (denominador) assim ficaria f(x)= \frac{2x}{...
por Victor_tnk
Dom Fev 19, 2012 03:55
 
Fórum: Funções
Tópico: Dominio de validade!
Respostas: 3
Exibições: 4402

Dominio de validade!

A função real f(x) = \frac{2x}{\sqrt[2]{x^2-2x+1}+{\sqrt[2]{x^2+2x+1}}} tem domínio de validade igual a: a) R b) R, exceto {1} c) R, exceto{-1} d)R, exceto{-1,1} e)R+ bom pelas minhas contas percebi que há dois trinômios quadrados perfeitos: \frac{2x}{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)...
por Victor_tnk
Sáb Fev 18, 2012 15:20
 
Fórum: Funções
Tópico: Dominio de validade!
Respostas: 3
Exibições: 4402

Voltar à pesquisa avançada